NJIT Physics 102 Formula Sheet

Chapter 1: Mathematics Formulas, Unit Conversions

Quadratic formula: $ax^2 + bx + c = 0$, $x = \left(-b \pm \sqrt{b^2 - 4ac}\right)/(2a)$

Unit conversions: 1 mile = 5,280 ft = 1.609 km

1 inch = 2.54 cm1 kg = 2.2 lbs

Chapter 5: Circular Motion

speed: $v = 2\pi r/T$

RPM: $v = \text{RPM's} \times 2\pi r/60$ Radial acceleration: $a_{\text{rad}} = v^2/r \text{ or } 4\pi^2 r/T^2$

Nonuniform motion: $|a_{\text{tot}}| = \sqrt{a_{\text{rad}}^2 + a_{\text{tan}}^2}$

Chapter 2: One-Dimensional Motion

Displacement: $\Delta x = x_f - x_0$

Constant velocity: $x_f = x_0 + vt$ or $\Delta x = vt$

Constant acceleration: $v_f = v_0 + at$

 $\Delta x = v_0 t + \frac{1}{2}at^2$ $v_f^2 = v_0^2 + 2a\Delta x$

 $v_f + v_0 = 2\Delta x/t$ $\Delta x = v_f t - \frac{1}{2}at^2$

Average velocity: $v_{\text{avg}} = (x_f - x_0)/(t_f - t_0)$

Average speed: speed = (total distance)/(elapsed time)

Average acceleration: $a_{\text{avg}} = (v_f - v_0)/(t_f - t_0)$

Acceleration due to gravity: $q = 9.8 \text{ m/s}^2$

Chapter 6: Work and Energy

Work done by a constant force: $W = Fd \cos \theta$

Kinetic energy: $K = \frac{1}{2}mv^2$

Work-energy theorem: $W_{\text{tot}} = K_2 - K_1 = \Delta K$

Power: $P = \Delta W / \Delta t$

 $P=F\,v$

Hooke's Law: $F_s = -kx$

Work done by a spring: $W = \frac{1}{2}k(x_0^2 - x_f^2)$

Work done by gravity: $W = -mg\Delta y$

Gravitational potential energy: $U_g = mgh$ Elastic potential energy: $U_E = \frac{1}{2}kx^2$

Conservation: $(K + \tilde{U}_g + U_E)_0 + W_{NC} = (K + U_g + U_E)_f$

Chapter 3: Vectors and Two-Dimensional Motion

Vector magnitude: $|\vec{A}| = \sqrt{A_x^2 + A_y^2}$ or $\sqrt{A_x^2 + A_y^2 + A_z^2}$

Vector direction: $\theta = \tan^{-1} \frac{A_y}{A_x}$, add 180° if necessary

Vector components: $A_x = |\vec{A}| \cos \theta$

 $A_y = |\vec{A}| \sin \theta$

Projectile motion, horizontal: $\Delta x = v_{0,x}t$

Projectile motion, vertical: $v_{f,y} = v_{0,y} + at$

 $\Delta y = v_{0,y}t + \frac{1}{2}at^2$

 $v_{f,y}^{2} = v_{0,y}^{2} + 2a\Delta y$ $\Delta y = v_{f,y}t - \frac{1}{2}at^{2}$

Projectile range: $R = v^2 \sin(2\theta)/g$

Chapter 7: Momentum, Impulse, and Collisions

Momentum: $\vec{p} = m\vec{v}$

Force and momentum: $\vec{F} = (\vec{p_f} - \vec{p_0})/\Delta t$ or $\Delta \vec{p}/\Delta t$

Impulse: $\vec{J} = \vec{p_f} - \vec{p_0} = m(\vec{v_f} - \vec{v_0}) = \vec{F} \Delta t$

Conservation: $m_A \vec{v}_A + m_B \vec{v}_B + \dots = m_A \vec{v}_A' + m_B \vec{v}_B' + \dots$

 $(\vec{v}_A{}',\,\vec{v}_B{}')$ are post-collision final velocities)

Completely inelastic collision: $m_A \vec{v}_A + m_B \vec{v}_B = (m_A + m_B) \vec{v}_f$

1-D Elastic collision: $v_A + v_A' = v_B + v_B'$

Center of mass: $x_{\text{CM}} = (m_1 x_1 + m_2 x_2 + ...)/(m_1 + m_2 + ...)$

Chapter 4: Forces

First Law: $\vec{F}_{\rm net} = 0 \longleftrightarrow \text{constant velocity}$

Second Law: $\vec{F}_{net} = m\vec{a}$ Third Law: $\vec{F}_{12} = -\vec{F}_{21}$

Kinetic and static friction: $f_k = \mu_k F_N$ and $f_s \le \mu_s F_N$

Normal force: $F_N = mg$ on horizontal surface,

 $F_N = mg \cos \theta$ on incline (in the absence of other forces)

Chapter 8: Rotational Motion, Part 1

Angular displacement: $\Delta \theta = \theta_f - \theta_0$

Constant velocity: $\theta_f = \theta_0 + \omega t$ or $\Delta \theta = \omega t$

Kinematics: $\omega_f = \omega_0 + \alpha t$

 $\Delta \theta = \omega_0 t + \frac{1}{2} \alpha t^2$ $\omega_f^2 = \omega_0^2 + 2\alpha \Delta \theta$

 $\omega_f + \omega_0 = 2\Delta\theta/t$

Velocity: $\omega_{\text{avg}} = (\theta_f - \theta_0)/(t_f - t_0)$ Acceleration: $\alpha_{\text{avg}} = (\omega_f - \omega_0)/(t_f - t_0)$

Acceleration: $\alpha_{\text{avg}} = (\omega_f - \omega_0)/(t_f - t_0)$ Angular \rightarrow tangential: $\Delta s = r\Delta\theta, v = r\omega, a = r\alpha$

No-slip condition: $v_{\rm cm} = R\omega$

Chapter 8: Rotational Motion, Part 2

Rotational KE: $K_{\text{rot}} = \frac{1}{2}I\omega^2$

Point mass, mr^2 . Disk, $\frac{1}{2}mR^2$. Ring, mR^2 CM Moment of Inertia:

Spherical shell, $\frac{2}{3}mR^2$. Sphere, $\frac{2}{5}mR^2$. Rod (about center), $\frac{1}{12}mL^2$

Parallel axis theorem: $I = I_{\rm CM} + md^2$ Torque (magnitude): $\tau = rF\sin\theta$

Newton's 2nd Law: $\tau_{\rm net} = I\alpha$

 $K = \frac{1}{2}mv_{\rm cm}^2 + \frac{1}{2}I_{\rm cm}\omega^2$ Translational/rotational energy:

 $W = \tau \Delta \theta$ Work done by constant torque:

Work-energy theorem: $W_{\text{tot}} = \frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_0^2$

 $\vec{L} = I\vec{\omega}$ (rigid body rotating about axis) Angular momentum:

 $I_A\omega_A + I_B\omega_B = I_A'\omega_A' + I_B'\omega_B'$ Conservation of angular momentum:

(primes indicate 'final')

Chapter 9: Static Equilibrium

Static equilibrium conditions: $\vec{F}_{\text{net}} = 0$

 $\tau_{\rm net} = 0$ about any point

Chapter 5: Gravitation

Gravitational constant: $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$

Mass of the Earth: $M_E = 5.97 \times 10^{24} \text{ kg}$ Radius of the Earth: $R_E = 6.38 \times 10^6 \text{ m}$ Force of gravity: $F_G = GMm/r^2$

Local acceleration due to gravity: $g = GM_E/R_E^2$

Orbits: $v = 2\pi r/T$

 $v^2 = GM/r$

 $T^2 = 4\pi^2 r^3/(GM)$

Updated 2025-05-04 13:39:21